Quantum Physics
[Submitted on 7 Mar 2016]
Title:A new technique for ultra-fast physical random number generation using optical chaos
View PDFAbstract:In this paper, we numerically demonstrate a new extraction scheme for generating ultra-fast physically random sequence of bits. For this purpose, we utilize a dual-channel optical chaos source with suppressed time delayed (TD) signature in both the intensity and the phase of its two channels. The proposed technique uses M 1-bit analog-to-digital converters (ADCs) to compare the level of the chaotic intensity signal at time t with its levels after incommensurable delay-interval Tm, where m = {1,2,...,M}. The binary output of each 1-bit ADC is then sampled by a positive-edge-triggered D flip-flop. The clock sequence applied to the flip-flops is relatively delayed such that the rising edge of the clock triggering the m flip-flop precedes the rising edge of the clock of a subsequent m+1 flip-flop by a fixed period. The outputs of all flip-flops are then combined by means of a parity-check logic. Numerical simulations are carried out using values of parameters at which TD signature is suppressed for chosen values of setup parameters. The 15 statistical tests in Special Publication 800-22 from NIST are applied to the generated random bits in order to examine the randomness quality of these bits for different values of M. The results show that all tests are passed from M = 1 to M = 39 at sampling rate up to 34.5 GHz which indicates that the maximum generation rate of random bits is 2.691 Tb/sec using a chaotic source of single VCSEL and without employing any pre-processing techniques.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.