Condensed Matter > Quantum Gases
[Submitted on 8 Mar 2016 (v1), last revised 29 Jun 2016 (this version, v2)]
Title:CONAN -- the cruncher of local exchange coefficients for strongly interacting confined systems in one dimension
View PDFAbstract:We consider a one-dimensional system of particles with strong zero-range interactions. This system can be mapped onto a spin chain of the Heisenberg type with exchange coefficients that depend on the external trap. In this paper, we present an algorithm that can be used to compute these exchange coefficients. We introduce an open source code CONAN (Coefficients of One-dimensional N-Atom Networks) which is based on this algorithm. CONAN works with arbitrary external potentials and we have tested its reliability for system sizes up to around 35 particles. As illustrative examples, we consider a harmonic trap and a box trap with a superimposed asymmetric tilted potential. For these examples, the computation time typically scales with the number of particles as $O(N^{3.5 \pm 0.4})$. Computation times are around 10 seconds for $N=10$ particles and less than 10 minutes for $N=20$ particles.
Submission history
From: Nikolaj Thomas Zinner [view email][v1] Tue, 8 Mar 2016 20:24:29 UTC (59 KB)
[v2] Wed, 29 Jun 2016 12:52:01 UTC (60 KB)
Current browse context:
cond-mat.quant-gas
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.