Computer Science > Social and Information Networks
[Submitted on 8 Apr 2016]
Title:Predicting the evolution of complex networks via local information
View PDFAbstract:Almost all real-world networks are subject to constant evolution, and plenty of evolving networks have been investigated to uncover the underlying mechanisms for a deeper understanding of the organization and development of them. Compared with the rapid expansion of the empirical studies about evolution mechanisms exploration, the future links prediction methods corresponding to the evolution mechanisms are deficient. Real-world information always contain hints of what would happen next, which is also the case in the observed evolving networks. In this paper, we firstly propose a structured-dependent index to strengthen the robustness of link prediction methods. Then we treat the observed links and their timestamps in evolving networks as known information. We envision evolving networks as dynamic systems and model the evolutionary dynamics of nodes similarity. Based on the iterative updating of nodes' network position, the potential trend of evolving networks is uncovered, which improves the accuracy of future links prediction. Experiments on various real-world networks show that the proposed index performs better than baseline methods and the spatial-temporal position drift model performs well in real-world evolving networks.
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.