Computer Science > Mathematical Software
[Submitted on 2 May 2016 (v1), last revised 14 Sep 2016 (this version, v2)]
Title:High level implementation of geometric multigrid solvers for finite element problems: applications in atmospheric modelling
View PDFAbstract:The implementation of efficient multigrid preconditioners for elliptic partial differential equations (PDEs) is a challenge due to the complexity of the resulting algorithms and corresponding computer code. For sophisticated finite element discretisations on unstructured grids an efficient implementation can be very time consuming and requires the programmer to have in-depth knowledge of the mathematical theory, parallel computing and optimisation techniques on manycore CPUs. In this paper we show how the development of bespoke multigrid preconditioners can be simplified significantly by using a framework which allows the expression of the each component of the algorithm at the correct abstraction level. Our approach (1) allows the expression of the finite element problem in a language which is close to the mathematical formulation of the problem, (2) guarantees the automatic generation and efficient execution of parallel optimised low-level computer code and (3) is flexible enough to support different abstraction levels and give the programmer control over details of the preconditioner. We use the composable abstractions of the Firedrake/PyOP2 package to demonstrate the efficiency of this approach for the solution of strongly anisotropic PDEs in atmospheric modelling. The weak formulation of the PDE is expressed in Unified Form Language (UFL) and the lower PyOP2 abstraction layer allows the manual design of computational kernels for a bespoke geometric multigrid preconditioner. We compare the performance of this preconditioner to a single-level method and hypre's BoomerAMG algorithm. The Firedrake/PyOP2 code is inherently parallel and we present a detailed performance analysis for a single node (24 cores) on the ARCHER supercomputer. Our implementation utilises a significant fraction of the available memory bandwidth and shows very good weak scaling on up to 6,144 compute cores.
Submission history
From: Eike Hermann Müller [view email][v1] Mon, 2 May 2016 14:06:24 UTC (506 KB)
[v2] Wed, 14 Sep 2016 09:10:47 UTC (127 KB)
Current browse context:
cs.MS
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.