Computer Science > Social and Information Networks
[Submitted on 2 May 2016]
Title:Predicting online extremism, content adopters, and interaction reciprocity
View PDFAbstract:We present a machine learning framework that leverages a mixture of metadata, network, and temporal features to detect extremist users, and predict content adopters and interaction reciprocity in social media. We exploit a unique dataset containing millions of tweets generated by more than 25 thousand users who have been manually identified, reported, and suspended by Twitter due to their involvement with extremist campaigns. We also leverage millions of tweets generated by a random sample of 25 thousand regular users who were exposed to, or consumed, extremist content. We carry out three forecasting tasks, (i) to detect extremist users, (ii) to estimate whether regular users will adopt extremist content, and finally (iii) to predict whether users will reciprocate contacts initiated by extremists. All forecasting tasks are set up in two scenarios: a post hoc (time independent) prediction task on aggregated data, and a simulated real-time prediction task. The performance of our framework is extremely promising, yielding in the different forecasting scenarios up to 93% AUC for extremist user detection, up to 80% AUC for content adoption prediction, and finally up to 72% AUC for interaction reciprocity forecasting. We conclude by providing a thorough feature analysis that helps determine which are the emerging signals that provide predictive power in different scenarios.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.