Mathematics > Numerical Analysis
[Submitted on 6 May 2016]
Title:Discretization of Fractional Differential Equations by a Piecewise Constant Approximation
View PDFAbstract:There has recently been considerable interest in using a nonstandard piecewise approximation to formulate fractional order differential equations as difference equations that describe the same dynamical behaviour and are more amenable to a dynamical systems analysis. Unfortunately, due to mistakes in the fundamental papers, the difference equations formulated through this process do not capture the dynamics of the fractional order equations. We show that the correct application of this nonstandard piecewise approximation leads to a one parameter family of fractional order differential equations that converges to the original equation as the parameter tends to zero. A closed formed solution exists for each member of this family and leads to the formulation of a difference equation that is of increasing order as time steps are taken. Whilst this does not lead to a simplified dynamical analysis it does lead to a numerical method for solving the fractional order differential equation. The method is shown to be equivalent to a quadrature based method, despite the fact that it has not been derived from a quadrature. The method can be implemented with non-uniform time steps. An example is provided showing that the difference equation can correctly capture the dynamics of the underlying fractional differential equation.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.