Physics > Physics and Society
[Submitted on 15 May 2016]
Title:Social contagions on time-varying community networks
View PDFAbstract:Time-varying community structures widely exist in various real-world networks. However, the spreading dynamics on this kind of network has not been fully studied. To this end, we systematically study the effects of time-varying community structures on social contagions. We first propose a non-Markovian social contagion model on time-varying community networks based on the activity driven network model, in which an individual adopts a behavior if and only if the accumulated behavioral information it has ever received reaches a threshold. Then, we develop a mean-field theory to describe the proposed model. From theoretical analyses and numerical simulations, we find that behavior adoption in the social contagions exhibits a hierarchical feature, i.e., the behavior first quickly spreads in one of the communities, and then outbreaks in the other. Moreover, under different behavioral information transmission rates, the final behavior adoption proportion in the whole network versus the community strength shows one of the patterns, which are a monotone increasing pattern, a non-monotonic changing pattern, and a monotone decreasing pattern. An optimal community strength maximizing the final behavior adoption can be found in a suitable range of behavioral information transmission rate. Finally, for a given average degree, increasing the number of edges generated by active nodes is more beneficial to the social contagions than increasing the average activity potential.
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.