Computer Science > Social and Information Networks
[Submitted on 16 May 2016 (v1), last revised 20 Feb 2017 (this version, v2)]
Title:Cumulative Activation in Social Networks
View PDFAbstract:Most studies on influence maximization focus on one-shot propagation, i.e. the influence is propagated from seed users only once following a probabilistic diffusion model and users' activation are determined via single cascade. In reality it is often the case that a user needs to be cumulatively impacted by receiving enough pieces of information propagated to her before she makes the final purchase decision. In this paper we model such cumulative activation as the following process: first multiple pieces of information are propagated independently in the social network following the classical independent cascade model, then the user will be activated (and adopt the product) if the cumulative pieces of information she received reaches her cumulative activation threshold. Two optimization problems are investigated under this framework: seed minimization with cumulative activation (SM-CA), which asks how to select a seed set with minimum size such that the number of cumulatively active nodes reaches a given requirement $\eta$; influence maximization with cumulative activation (IM-CA), which asks how to choose a seed set with fixed budget to maximize the number of cumulatively active nodes. For SM-CA problem, we design a greedy algorithm that yields a bicriteria $O(\ln n)$-approximation when $\eta=n$, where $n$ is the number of nodes in the network. For both SM-CA problem with $\eta<n$ and IM-CA problem, we prove strong inapproximability results. Despite the hardness results, we propose two efficient heuristic algorithms for SM-CA and IM-CA respectively based on the reverse reachable set approach. Experimental results on different real-world social networks show that our algorithms significantly outperform baseline algorithms.
Submission history
From: Xiaohan Shan [view email][v1] Mon, 16 May 2016 02:39:45 UTC (705 KB)
[v2] Mon, 20 Feb 2017 08:20:52 UTC (1,011 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.