Computer Science > Computation and Language
[Submitted on 17 May 2016]
Title:Automatic Detection and Categorization of Election-Related Tweets
View PDFAbstract:With the rise in popularity of public social media and micro-blogging services, most notably Twitter, the people have found a venue to hear and be heard by their peers without an intermediary. As a consequence, and aided by the public nature of Twitter, political scientists now potentially have the means to analyse and understand the narratives that organically form, spread and decline among the public in a political campaign. However, the volume and diversity of the conversation on Twitter, combined with its noisy and idiosyncratic nature, make this a hard task. Thus, advanced data mining and language processing techniques are required to process and analyse the data. In this paper, we present and evaluate a technical framework, based on recent advances in deep neural networks, for identifying and analysing election-related conversation on Twitter on a continuous, longitudinal basis. Our models can detect election-related tweets with an F-score of 0.92 and can categorize these tweets into 22 topics with an F-score of 0.90.
Submission history
From: Soroush Vosoughi Dr [view email][v1] Tue, 17 May 2016 13:06:49 UTC (435 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.