Mathematics > Numerical Analysis
[Submitted on 14 May 2016]
Title:On the kernel and particle consistency in smoothed particle hydrodynamics
View PDFAbstract:The problem of consistency of smoothed particle hydrodynamics (SPH) has demanded considerable attention in the past few years due to the ever increasing number of applications of the method in many areas of science and engineering. A loss of consistency leads to an inevitable loss of approximation accuracy. In this paper, we revisit the issue of SPH kernel and particle consistency and demonstrate that SPH has a limiting second-order convergence rate. Numerical experiments with suitably chosen test functions validate this conclusion. In particular, we find that when using the root mean square error as a model evaluation statistics, well-known corrective SPH schemes, which were thought to converge to second, or even higher order, are actually first-order accurate, or at best close to second order. We also find that observing the joint limit when $N\to\infty$, $h\to 0$, and $n\to\infty$, as was recently proposed by Zhu et al., where $N$ is the total number of particles, $h$ is the smoothing length, and $n$ is the number of neighbor particles, standard SPH restores full $C^{0}$ particle consistency for both the estimates of the function and its derivatives and becomes insensitive to particle disorder.
Current browse context:
physics.comp-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.