Physics > Chemical Physics
[Submitted on 20 May 2016]
Title:Theoretical study of asymmetric A-π-D-π-D-π-A' tribranched organic sensitizer for Dye-sensitized solar cells
View PDFAbstract:An asymmetric A-{\pi}-D-{\pi}-D-{\pi}-A' tribranched organic dye (dye1) with a cyanoacrylic acid and an indolinum carboxyl acid as electron acceptors and a triphenylamine as an electron donor was designed and theoretically investigated for dye-sensitized solar cells (DSSCs). Dye1 was compared to reference well-known dyes with single electron acceptors (D5 and JYL-SQ6). Density functional theory and time-dependent density functional theory calculations were used to estimate the photovoltaic properties of the dyes. Due to the different lowest unoccupied molecular orbital levels of each acceptor and the energy antenna of the dual electron donor (D-{\pi}-D), the absorption spectrum of each branch displayed different shapes. Considering the overall properties, the asymmetric A-{\pi}-D-{\pi}-D-{\pi}-A' tribranched organic dye exhibited high conversion efficiency performance for DSSCs. The findings of this work suggest that optimizing the branch of electron donors and acceptors in dye sensitizers based on asymmetric A-{\pi}-D-{\pi}-D-{\pi}-A' tribranched organic dye produces good photovoltaic properties for DSSCs.
Current browse context:
physics.chem-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.