Computer Science > Social and Information Networks
[Submitted on 25 May 2016 (v1), last revised 22 Feb 2017 (this version, v3)]
Title:Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks
View PDFAbstract:Influence Maximization (IM), that seeks a small set of key users who spread the influence widely into the network, is a core problem in multiple domains. It finds applications in viral marketing, epidemic control, and assessing cascading failures within complex systems. Despite the huge amount of effort, IM in billion-scale networks such as Facebook, Twitter, and World Wide Web has not been satisfactorily solved. Even the state-of-the-art methods such as TIM+ and IMM may take days on those networks.
In this paper, we propose SSA and D-SSA, two novel sampling frameworks for IM-based viral marketing problems. SSA and D-SSA are up to 1200 times faster than the SIGMOD'15 best method, IMM, while providing the same $(1-1/e-\epsilon)$ approximation guarantee. Underlying our frameworks is an innovative Stop-and-Stare strategy in which they stop at exponential check points to verify (stare) if there is adequate statistical evidence on the solution quality. Theoretically, we prove that SSA and D-SSA are the first approximation algorithms that use (asymptotically) minimum numbers of samples, meeting strict theoretical thresholds characterized for IM. The absolute superiority of SSA and D-SSA are confirmed through extensive experiments on real network data for IM and another topic-aware viral marketing problem, named TVM. The source code is available at this https URL
Submission history
From: Thang N. Dinh [view email][v1] Wed, 25 May 2016 18:15:01 UTC (2,648 KB)
[v2] Wed, 7 Sep 2016 14:40:39 UTC (1,209 KB)
[v3] Wed, 22 Feb 2017 05:15:27 UTC (1,367 KB)
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.