Computer Science > Social and Information Networks
[Submitted on 27 May 2016]
Title:A Simple and Strongly-Local Flow-Based Method for Cut Improvement
View PDFAbstract:Many graph-based learning problems can be cast as finding a good set of vertices nearby a seed set, and a powerful methodology for these problems is based on maximum flows. We introduce and analyze a new method for locally-biased graph-based learning called SimpleLocal, which finds good conductance cuts near a set of seed vertices. An important feature of our algorithm is that it is strongly-local, meaning it does not need to explore the entire graph to find cuts that are locally optimal. This method solves the same objective as existing strongly-local flow-based methods, but it enables a simple implementation. We also show how it achieves localization through an implicit L1-norm penalty term. As a flow-based method, our algorithm exhibits several ad- vantages in terms of cut optimality and accurate identification of target regions in a graph. We demonstrate the power of SimpleLocal by solving problems on a 467 million edge graph based on an MRI scan.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.