Physics > Physics and Society
[Submitted on 27 May 2016 (v1), last revised 2 Jun 2016 (this version, v2)]
Title:The Many-agent limit of the Extreme Introvert-Extrovert model
View PDFAbstract:We consider a toy model of interacting extrovert and introvert agents introduced earlier by Liu et al [Europhys. Lett. {\bf 100} (2012) 66007]. The number of extroverts, and introverts is $N$ each. At each time step, we select an agent at random, and allow her to modify her state. If an extrovert is selected, she adds a link at random to an unconnected introvert. If an introvert is selected, she removes one of her links. The set of $N^2$ links evolves in time, and may be considered as a set of Ising spins on an $N \times N$ square-grid with single-spin-flip dynamics. This dynamics satisfies detailed balance condition, and the probability of different spin configurations in the steady state can be determined exactly. The effective hamiltonian has long-range multi-spin couplings that depend on the row and column sums of spins. If the relative bias of choosing an extrovert over an introvert is varied, this system undergoes a phase transition from a state with very few links to one in which most links are occupied. We show that the behavior of the system can be determined exactly in the limit of large $N$. The behavior of large fluctuations in the total numer of links near the phase transition is determined. We also discuss two variations, called egalitarian and elitist agents, when the agents preferentially add or delete links to their least/ most-connected neighbor. These shows interesting cooperative behavior.
Submission history
From: Deepak Dhar [view email][v1] Fri, 27 May 2016 06:58:41 UTC (82 KB)
[v2] Thu, 2 Jun 2016 08:17:53 UTC (82 KB)
Current browse context:
physics.soc-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.