Physics > Atomic Physics
[Submitted on 27 May 2016 (v1), last revised 26 Mar 2018 (this version, v3)]
Title:Uncovering the non-equilibrium phase structure of an open quantum spin system
View PDFAbstract:We experimentally and theoretically investigate the non-equilibrium phase structure of a well-controlled driven-disspative quantum spin system governed by the interplay of coherent driving, spontaneous decay and long-range spin-spin interactions. We discover that the rate of population loss provides a convenient macroscopic observable that exhibits power-law scaling with the driving strength over several orders of magnitude. The measured scaling exponents reflect the underlying non-equilibrium phase structure of the many-body system, which includes dissipation-dominated, paramagnetic and critical regimes as well as an instability which drives the system towards states with high excitation density. This opens up a new means to study and classify quantum systems out of equilibrium and extends the domain where scale-invariant behavior may be found in nature.
Submission history
From: Stephan Helmrich [view email][v1] Fri, 27 May 2016 12:34:08 UTC (1,209 KB)
[v2] Wed, 3 Aug 2016 14:26:33 UTC (2,282 KB)
[v3] Mon, 26 Mar 2018 08:29:36 UTC (1,132 KB)
Current browse context:
physics.atom-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.