Computer Science > Social and Information Networks
[Submitted on 30 May 2016 (v1), last revised 31 May 2016 (this version, v2)]
Title:Assessment of Effectiveness of Content Models for Approximating Twitter Social Connection Structures
View PDFAbstract:This paper explores the social quality (goodness) of community structures formed across Twitter users, where social links within the structures are estimated based upon semantic properties of user-generated content (corpus). We examined the overlap of the community structures of the constructed graphs, and followership-based social communities, to find the social goodness of the links constructed. Unigram, bigram and LDA content models were empirically investigated for evaluation of effectiveness, as approximators of underlying social graphs, such that they maintain the {\it community} social property. Impact of content at varying granularities, for the purpose of predicting links while retaining the social community structures, was investigated. 100 discussion topics, spanning over 10 Twitter events, were used for experiments. The unigram language model performed the best, indicating strong similarity of word usage within deeply connected social communities. This observation agrees with the phenomenon of evolution of word usage behavior, that transform individuals belonging to the same community tending to choose the same words, made by Danescu et al. (2013), and raises a question on the literature that use, without validation, LDA for content-based social link prediction over other content models. Also, semantically finer-grained content was observed to be more effective compared to coarser-grained content.
Submission history
From: Kuntal Dey [view email][v1] Mon, 30 May 2016 17:36:55 UTC (166 KB)
[v2] Tue, 31 May 2016 01:24:20 UTC (166 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.