Mathematics > Statistics Theory
[Submitted on 1 Jun 2016 (v1), last revised 11 Jan 2018 (this version, v2)]
Title:Testing for Common Breaks in a Multiple Equations System
View PDFAbstract:The issue addressed in this paper is that of testing for common breaks across or within equations of a multivariate system. Our framework is very general and allows integrated regressors and trends as well as stationary regressors. The null hypothesis is that breaks in different parameters occur at common locations and are separated by some positive fraction of the sample size unless they occur across different equations. Under the alternative hypothesis, the break dates across parameters are not the same and also need not be separated by a positive fraction of the sample size whether within or across equations. The test considered is the quasi-likelihood ratio test assuming normal errors, though as usual the limit distribution of the test remains valid with non-normal errors. Of independent interest, we provide results about the rate of convergence of the estimates when searching over all possible partitions subject only to the requirement that each regime contains at least as many observations as some positive fraction of the sample size, allowing break dates not separated by a positive fraction of the sample size across equations. Simulations show that the test has good finite sample properties. We also provide an application to issues related to level shifts and persistence for various measures of inflation to illustrate its usefulness.
Submission history
From: Tatsushi Oka [view email][v1] Wed, 1 Jun 2016 01:55:19 UTC (190 KB)
[v2] Thu, 11 Jan 2018 01:35:15 UTC (195 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.