Physics > Physics and Society
[Submitted on 14 Jun 2016]
Title:Modeling Fractal Structure of Systems of Cities Using Spatial Correlation Function
View PDFAbstract:This paper proposes a new method to analyze the spatial structure of urban systems using ideas from fractals. Regarding a system of cities as a set of "particles" distributed randomly on a triangular lattice, we construct a spatial correlation function of cities. Suppose that the spatial correlation follows the power law. It can be proved that the correlation exponent is the second order generalized dimension. The spatial correlation model is applied to the system of cities in China. The results show that the Chinese urban system can be described by the correlation dimension ranging from 1.3 to 1.6. The fractality of self-organized network of cities in both the conventional geographic space and the "time" space is revealed with the empirical evidence. The spatial correlation analysis is significant in that it is applicable to both large and small sizes of samples and can be used to link different fractal dimensions in urban study, including box dimension and radial dimension.
Current browse context:
physics.soc-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.