Astrophysics > Astrophysics of Galaxies
[Submitted on 30 Jun 2016 (v1), last revised 10 Jul 2016 (this version, v3)]
Title:The magnetic field and dust filaments in the Polaris Flare
View PDFAbstract:In diffuse molecular clouds, possible precursors of star-forming clouds, the effect of the magnetic field is unclear. In this work we compare the orientations of filamentary structures in the Polaris Flare, as seen through dust emission by Herschel, to the plane-of-the-sky magnetic field orientation ($\rm B_{pos}$) as revealed by stellar optical polarimetry with RoboPol. Dust structures in this translucent cloud show a strong preference for alignment with $\rm B_{pos}$. 70 % of field orientations are consistent with those of the filaments (within 30$^\circ$). We explore the spatial variation of the relative orientations and find it to be uncorrelated with the dust emission intensity and correlated to the dispersion of polarization angles. Concentrating in the area around the highest column density filament, and in the region with the most uniform field, we infer the $\rm B_{pos}$ strength to be 24 $-$ 120 $\mu$G. Assuming that the magnetic field can be decomposed into a turbulent and an ordered component, we find a turbulent-to-ordered ratio of 0.2 $-$ 0.8, implying that the magnetic field is dynamically important, at least in these two areas. We discuss implications on the 3D field properties, as well as on the distance estimate of the cloud.
Submission history
From: Georgia Virginia Panopoulou [view email][v1] Thu, 30 Jun 2016 20:00:05 UTC (4,386 KB)
[v2] Mon, 4 Jul 2016 14:12:13 UTC (4,386 KB)
[v3] Sun, 10 Jul 2016 06:50:25 UTC (4,386 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.