Physics > Optics
[Submitted on 21 Oct 2016]
Title:Target decoupling in a coupled optical system resistant to random perturbation
View PDFAbstract:To suppress unwanted crosstalks between nearby optical elements, the decoupling technique for integrated systems has been desired for the target control of light flows. Although cloaking methods have enabled complete decoupling of optical elements by manipulating electromagnetic waves microscopically, it is neither feasible nor necessary to control each unit element in coupled systems when considering severe restrictions on material parameters for cloaking. Here we develop the macroscopic approach to design crosstalk-free regions in coupled optical systems. By inversely designing the eigenstate which encompasses target elements, the stable decoupling of the elements from the coupled system is achieved, being completely independent from the random alteration of the decoupled region, and at the same time, allowing coherent and scattering-free wave transport with desired spatial profiles. We also demonstrate the decoupling in disordered systems, overcoming the transport blockade from Anderson localization. Our results provide an attractive solution for 'target hiding' of elements inside coupled systems.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.