Mathematics > Analysis of PDEs
[Submitted on 27 Oct 2016 (v1), last revised 10 Oct 2017 (this version, v2)]
Title:Linear Inviscid Damping for Couette Flow in Stratified Fluid
View PDFAbstract:We study the inviscid damping of Couette flow with an exponentially stratified density. The optimal decay rates of the velocity field and the density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full Euler equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the dispersive decay due to the exponential stratification when there is no shear.
Submission history
From: Jincheng Yang [view email][v1] Thu, 27 Oct 2016 18:50:53 UTC (26 KB)
[v2] Tue, 10 Oct 2017 18:10:17 UTC (25 KB)
Current browse context:
math.AP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.