General Relativity and Quantum Cosmology
[Submitted on 31 Oct 2016 (v1), last revised 11 Aug 2017 (this version, v4)]
Title:More On Cosmological Gravitational Waves And Their Memories
View PDFAbstract:We extend recent theoretical results on the propagation of linear gravitational waves (GWs), including their associated memories, in spatially flat Friedmann--Lemaître--Robertson--Walker (FLRW) universes, for all spacetime dimensions higher than 3. By specializing to a cosmology driven by a perfect fluid with a constant equation-of-state $w$ -- conformal re-scaling, dimension-reduction and Nariai's ansatz may then be exploited to obtain analytic expressions for the graviton and photon Green's functions, allowing their causal structure to be elucidated. When $0 < w \leq 1$, the gauge-invariant scalar mode admits wave solutions, and like its tensor counterpart, likely contributes to the tidal squeezing and stretching of the space around a GW detector. In addition, scalar GWs in 4D radiation dominated universes -- like tensor GWs in 4D matter dominated ones -- appear to yield a tail signal that does not decay with increasing spatial distance from the source. We then solve electromagnetism in the same cosmologies, and point out a tail-induced electric memory effect. Finally, in even dimensional Minkowski backgrounds higher than 2, we make a brief but explicit comparison between the linear GW memory generated by point masses scattering off each other on unbound trajectories and the linear Yang-Mills memory generated by color point charges doing the same -- and point out how there is a "double copy" relation between the two.
Submission history
From: Yi-Zen Chu [view email][v1] Mon, 31 Oct 2016 20:05:53 UTC (98 KB)
[v2] Fri, 11 Nov 2016 08:13:52 UTC (98 KB)
[v3] Tue, 10 Jan 2017 00:29:04 UTC (99 KB)
[v4] Fri, 11 Aug 2017 05:57:29 UTC (97 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.