Quantitative Finance > Portfolio Management
[Submitted on 18 Aug 2017]
Title:Portfolio Optimization with Entropic Value-at-Risk
View PDFAbstract:The entropic value-at-risk (EVaR) is a new coherent risk measure, which is an upper bound for both the value-at-risk (VaR) and conditional value-at-risk (CVaR). As important properties, the EVaR is strongly monotone over its domain and strictly monotone over a broad sub-domain including all continuous distributions, while well-known monotone risk measures, such as VaR and CVaR lack these properties. A key feature for a risk measure, besides its financial properties, is its applicability in large-scale sample-based portfolio optimization. If the negative return of an investment portfolio is a differentiable convex function, the portfolio optimization with the EVaR results in a differentiable convex program whose number of variables and constraints is independent of the sample size, which is not the case for the VaR and CVaR. This enables us to design an efficient algorithm using differentiable convex optimization. Our extensive numerical study shows the high efficiency of the algorithm in large scales, compared to the existing convex optimization software packages. The computational efficiency of the EVaR portfolio optimization approach is also compared with that of CVaR-based portfolio optimization. This comparison shows that the EVaR approach generally performs similarly, and it outperforms as the sample size increases. Moreover, the comparison of the portfolios obtained for a real case by the EVaR and CVaR approaches shows that the EVaR approach can find portfolios with better expectations and VaR values at high confidence levels.
Submission history
From: Amir Ahmadi Javid [view email][v1] Fri, 18 Aug 2017 15:38:56 UTC (1,078 KB)
Current browse context:
q-fin.PM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.