Physics > Accelerator Physics
[Submitted on 6 Feb 2018]
Title:Simulation of deflecting structures for dielectric laser driven accelerators
View PDFAbstract:In laser illuminated dielectric accelerators (DLA) high acceleration gradients can be achieved, due to high damage thresholds of the materials at optical frequencies. This is a necessity in developing more compact particle accelerator technologies. The Accelerator on a CHip International Program funded by the Gordon and Betty Moore Foundation is researching such devices. Means to manipulate the beam, i.e. focusing and deflection, are needed for the proper operation of such devices. These means should rely on the same technologies for manufacturing and powering like the accelerating structures. In this study different concepts for dielectric laser driven deflecting structures are investigated via particle-in-cell (PIC) simulations and compared afterwards. The comparison is conducted with respect to the suitability for beam manipulation. Another interesting application will be investigated as a diagnostic device for ultra short electron bunches from conventional accelerators functioning like a radio frequency transverse deflecting cavity (TDS).
Current browse context:
physics.acc-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.