Physics > Instrumentation and Detectors
[Submitted on 13 Feb 2018]
Title:Quadratic magnetooptic spectroscopy setup based on photoelastic light modulation
View PDFAbstract:In most of the cases the magnetooptic Kerr effect (MOKE) techniques rely solely on the effects linear in magnetization ($\bm{M}$). Nevertheless, a higher-order term being proportional to $\bm{M}$$^2$ and called quadratic MOKE (QMOKE) can additionally contribute to experimental data. Handling and understanding the underlying origin of QMOKE could be the key to utilize this effect for investigation of antiferromagnetic materials in the future due to their vanishing first order MOKE contribution. Also, better understanding of QMOKE and hence better understanding of magnetooptic (MO) effects in general is very valuable, as the MO effect is very much employed in research of ferro- and ferrimagnetic materials. Therefore, we present our QMOKE and longitudinal MOKE spectroscopy setup with a spectral range of 0.8--5.5\,eV. The setup is based on light modulation through a photoelastic modulator and detection of second-harmonic intensity by a lock-in amplifier. To measure the Kerr ellipticity an achromatic compensator is used within the setup, whereas without it Kerr rotation is measured. The separation of QMOKE spectra directly from the measured data is based on measurements with multiple magnetization directions. So far the QMOKE separation algorithm is developed and tested for but not limited to cubic (001) oriented samples. The QMOKE spectra yielded by our setup arise from two quadratic MO parameters $G_s$ and $2G_{44}$, being elements of quadratic MO tensor $\bm{G}$, which describe perturbation of the permittivity tensor in the second order in $\bm{M}$.
Current browse context:
physics.ins-det
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.