Physics > Physics and Society
[Submitted on 14 Feb 2018 (v1), last revised 3 Mar 2019 (this version, v3)]
Title:Degree distributions of bipartite networks and their projections
View PDFAbstract:Bipartite (two-mode) networks are important in the analysis of social and economic systems as they explicitly show conceptual links between different types of entities. However, applications of such networks often work with a projected (one-mode) version of the original bipartite network. The topology of the projected network, and the dynamics that take place on it, are highly dependent on the degree distributions of the two different node types from the original bipartite structure. To date, the interaction between the degree distributions of bipartite networks and their one-mode projections is well understood for only a few cases, or for networks that satisfy a restrictive set of assumptions. Here we show a broader analysis in order to fill the gap left by previous studies. We use the formalism of generating functions to prove that the degree distributions of both node types in the original bipartite network affect the degree distribution in the projected version. To support our analysis, we simulate several types of synthetic bipartite networks using a configuration model where node degrees are assigned from specific probability distributions, ranging from peaked to heavy-tailed distributions. Our findings show that when projecting a bipartite network onto a particular set of nodes, the degree distribution for the resulting one-mode network follows the distribution of the nodes being projected on to, but only so long as the degree distribution for the opposite set of nodes does not have a heavier tail. Furthermore, we show that bipartite degree distributions are not the only feature driving topology formation of projected networks, in contrast to what is commonly described in the literature.
Submission history
From: Demival Vasques Filho [view email][v1] Wed, 14 Feb 2018 04:38:15 UTC (2,837 KB)
[v2] Thu, 15 Feb 2018 02:17:03 UTC (2,842 KB)
[v3] Sun, 3 Mar 2019 14:50:05 UTC (2,419 KB)
Current browse context:
physics.soc-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.