High Energy Physics - Theory
[Submitted on 15 Mar 2018 (v1), last revised 30 Oct 2018 (this version, v4)]
Title:Fine structure in holographic entanglement and entanglement contour
View PDFAbstract:We explore the fine structure of the holographic entanglement entropy proposal (the Ryu-Takayanagi formula) in AdS$_3$/CFT$_{2}$. With the guidance from the boundary and bulk modular flows we find a natural slicing of the entanglement wedge with the modular planes, which are co-dimension one bulk surfaces tangent to the modular flow everywhere. This gives an one-to-one correspondence between the points on the boundary interval $\mathcal{A}$ and the points on the Ryu-Takayanagi (RT) surface $\mathcal{E}_{\mathcal{A}}$. In the same sense an arbitrary subinterval $\mathcal{A}_2$ of $\mathcal{A}$ will correspond to a subinterval $\mathcal{E}_2$ of $\mathcal{E}_{\mathcal{A}}$. This fine correspondence indicates that the length of $\mathcal{E}_2$ captures the contribution $s_{\mathcal{A}}(\mathcal{A}_2)$ from $\mathcal{A}_2$ to the entanglement entropy $S_{\mathcal{A}}$, hence gives the contour function for entanglement entropy. Furthermore we propose that $s_{\mathcal{A}}(\mathcal{A}_2)$ in general can be written as a simple linear combination of entanglement entropies of single intervals inside $\mathcal{A}$. This proposal passes several non-trivial tests.
Submission history
From: Qiang Wen [view email][v1] Thu, 15 Mar 2018 00:44:27 UTC (883 KB)
[v2] Tue, 3 Apr 2018 19:47:20 UTC (1,278 KB)
[v3] Wed, 1 Aug 2018 12:05:59 UTC (1,361 KB)
[v4] Tue, 30 Oct 2018 11:34:50 UTC (1,361 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.