Physics > Fluid Dynamics
[Submitted on 16 Mar 2018 (v1), last revised 26 Jul 2018 (this version, v2)]
Title:Kinematic dynamo action of a precession driven flow based on the results of water experiments and hydrodynamic simulations
View PDFAbstract:The project DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies) conducted at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) provides a new platform for a variety of liquid sodium experiments devoted to problems of geo- and astrophysical magnetohydrodynamics. The most ambitious experiment within this project is a precession driven dynamo experiment that currently is under construction. It consists of a cylinder filled with liquid sodium that simultaneously rotates around two axes. The experiment is motivated by the idea of a precession-driven flow as a complementary energy source for the geodynamo or the ancient lunar dynamo.
In the present study we address numerical and experimental examinations in order to identify parameter regions where the onset of magnetic field excitation will be most probable. Both approaches show that in the strongly nonlinear regime the flow is essentially composed of the directly forced primary Kelvin mode and higher modes in terms of standing inertial waves that arise from nonlinear self-interactions. A peculiarity is the resonance-like emergence of an axisymmetric mode that represents a double roll structure in the meridional plane, which, however, only occurs in a very limited range of the precession ratio. This axisymmetric mode turns out to be beneficial for dynamo action, and kinematic simulations of the magnetic field evolution induced by the time-averaged flow exhibit magnetic field excitation at critical magnetic Reynolds numbers around ${\rm{Rm}}^{\rm{c}}\approx 430$, which is well within the range of the planned liquid sodium experiment.
Submission history
From: André Giesecke [view email][v1] Fri, 16 Mar 2018 07:29:14 UTC (2,519 KB)
[v2] Thu, 26 Jul 2018 07:35:46 UTC (8,381 KB)
Current browse context:
physics.flu-dyn
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.