Physics > Atomic Physics
[Submitted on 13 Apr 2018]
Title:Improving the accuracy of atom interferometers with ultracold sources
View PDFAbstract:We report on the implementation of ultracold atoms as a source in a state of the art atom gravimeter. We perform gravity measurements with 10 nm/s 2 statistical uncertainties in a so-far unexplored temperature range for such a high accuracy sensor, down to 50 nK. This allows for an improved characterization of the most limiting systematic effect, related to wavefront aberrations of light beam splitters. A thorough model of the impact of this effect onto the measurement is developed and a method is proposed to correct for this bias based on the extrapolation of the measurements down to zero temperature. Finally, an uncertainty of 13 nm/s 2 is obtained in the evaluation of this systematic effect, which can be improved further by performing measurements at even lower temperatures. Our results clearly demonstrate the benefit brought by ultracold atoms to the metrological study of free falling atom interferometers. By tackling their main limitation, our method allows reaching record-breaking accuracies for inertial sensors based on atom interferometry.
Submission history
From: Franck Pereira dos Santos [view email] [via CCSD proxy][v1] Fri, 13 Apr 2018 12:16:02 UTC (241 KB)
Current browse context:
physics.atom-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.