High Energy Physics - Theory
[Submitted on 15 May 2018]
Title:Black holes, complexity and quantum chaos
View PDFAbstract:We study aspects of black holes and quantum chaos through the behavior of computational costs, which are distance notions in the manifold of unitaries of the theory. To this end, we enlarge Nielsen geometric approach to quantum computation and provide metrics for finite temperature/energy scenarios and CFT's. From the framework, it is clear that costs can grow in two different ways: operator vs `simple' growths. The first type mixes operators associated to different penalties, while the second does not. Important examples of simple growths are those related to symmetry transformations, and we describe the costs of rotations, translations, and boosts. For black holes, this analysis shows how infalling particle costs are controlled by the maximal Lyapunov exponent, and motivates a further bound on the growth of chaos. The analysis also suggests a correspondence between proper energies in the bulk and average `local' scaling dimensions in the boundary. Finally, we describe these complexity features from a dual perspective. Using recent results on SYK we compute a lower bound to the computational cost growth in SYK at infinite temperature. At intermediate times it is controlled by the Lyapunov exponent, while at long times it saturates to a linear growth, as expected from the gravity description.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.