Physics > Applied Physics
[Submitted on 31 May 2018]
Title:Resonate and Fire Neuron with Fixed Magnetic Skyrmions
View PDFAbstract:In the brain, the membrane potential of many neurons oscillates in a subthreshold damped fashion and fire when excited by an input frequency that nearly equals their eigen frequency. In this work, we investigate theoretically the artificial implementation of such "resonate-and-fire" neurons by utilizing the magnetization dynamics of a fixed magnetic skyrmion in the free layer of a magnetic tunnel junction (MTJ). To realize firing of this nanomagnetic implementation of an artificial neuron, we propose to employ voltage control of magnetic anisotropy or voltage generated strain as an input (spike or sinusoidal) signal, which modulates the perpendicular magnetic anisotropy (PMA). This results in continual expansion and shrinking (i.e. breathing) of a skyrmion core that mimics the subthreshold oscillation. Any subsequent input pulse having an interval close to the breathing period or a sinusoidal input close to the eigen frequency drives the magnetization dynamics of the fixed skyrmion in a resonant manner. The time varying electrical resistance of the MTJ layer due to this resonant oscillation of the skyrmion core is used to drive a Complementary Metal Oxide Semiconductor (CMOS) buffer circuit, which produces spike outputs. By rigorous micromagnetic simulation, we investigate the interspike timing dependence and response to different excitatory and inhibitory incoming input pulses. Finally, we show that such resonate and fire neurons have potential application in coupled nanomagnetic oscillator based associative memory arrays.
Submission history
From: Jayasimha Atulasimha [view email][v1] Thu, 31 May 2018 20:14:44 UTC (2,122 KB)
Current browse context:
physics.app-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.