High Energy Physics - Theory
[Submitted on 4 Jun 2018 (v1), last revised 26 Jul 2018 (this version, v2)]
Title:The Double Pentaladder Integral to All Orders
View PDFAbstract:We compute dual-conformally invariant ladder integrals that are capped off by pentagons at each end of the ladder. Such integrals appear in six-point amplitudes in planar N=4 super-Yang-Mills theory. We provide exact, finite-coupling formulas for the basic double pentaladder integrals as a single Mellin integral over hypergeometric functions. For particular choices of the dual conformal cross ratios, we can evaluate the integral at weak coupling to high loop orders in terms of multiple polylogarithms. We argue that the integrals are exponentially suppressed at strong coupling. We describe the space of functions that contains all such double pentaladder integrals and their derivatives, or coproducts. This space, a prototype for the space of Steinmann hexagon functions, has a simple algebraic structure, which we elucidate by considering a particular discontinuity of the functions that localizes the Mellin integral and collapses the relevant symbol alphabet. This function space is endowed with a coaction, both perturbatively and at finite coupling, which mixes the independent solutions of the hypergeometric differential equation and constructively realizes a coaction principle of the type believed to hold in the full Steinmann hexagon function space.
Submission history
From: Lance Dixon [view email][v1] Mon, 4 Jun 2018 20:06:35 UTC (395 KB)
[v2] Thu, 26 Jul 2018 15:34:24 UTC (394 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.