High Energy Physics - Theory
[Submitted on 4 Jun 2018 (v1), last revised 31 Mar 2019 (this version, v4)]
Title:A Solvable Deformation of Quantum Mechanics
View PDFAbstract:The conventional Hamiltonian $H= p^2+ V_N(x)$, where the potential $V_N(x)$ is a polynomial of degree $N$, has been studied intensively since the birth of quantum mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper we point out that the deformed Hamiltonian $H=2 \cosh(p)+ V_N(x)$ is exactly solvable for any potential: a conjectural exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg-Witten curve of $\mathcal{N}=2$ Yang-Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional quantum mechanics emerges in a scaling limit near the Argyres-Douglas superconformal point in moduli space. Although our deformed version of quantum mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.
Submission history
From: Alba Grassi [view email] [via SIGMA proxy][v1] Mon, 4 Jun 2018 21:55:26 UTC (2,787 KB)
[v2] Fri, 15 Jun 2018 14:26:02 UTC (175 KB)
[v3] Mon, 24 Sep 2018 20:40:52 UTC (1,452 KB)
[v4] Sun, 31 Mar 2019 06:36:24 UTC (1,454 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.