High Energy Physics - Theory
[Submitted on 19 Jun 2018 (v1), last revised 26 Feb 2019 (this version, v2)]
Title:Dynamical gauge fields and anomalous transport at strong coupling
View PDFAbstract:Anomalous transport coefficients are known to be universal in the absence of dynamical gauge fields. We calculate the corrections to these universal values due to dynamical gluon fields at strong coupling, at finite temperature and finite density, using the holographic duality. We show that the consistent chiral magnetic and chiral vortical currents receive no corrections, while we derive a semi-analytic formula for the chiral separation conductivity. We determine these corrections in the large color, large flavor limit, in terms of a series expansion in the anomalous dimension $\Delta$ of the axial current in terms of physical parameters $\Delta$, temperature, electric and chiral chemical potentials and the flavor to color ratio $\frac{N_f}{N_c}$. Our results are applicable to a generic class of chiral gauge theories that allow for a holographic description in the gravity approximation. We also determine the dynamical gluon corrections to the chiral vortical separation current in a particular example in the absence of external axial fields.
Submission history
From: Angel Domingo Gallegos Pazos [view email][v1] Tue, 19 Jun 2018 10:09:25 UTC (138 KB)
[v2] Tue, 26 Feb 2019 14:50:17 UTC (132 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.