High Energy Physics - Theory
[Submitted on 3 Jul 2018 (v1), last revised 4 Jul 2018 (this version, v2)]
Title:Axial gravity: a non-perturbative approach to split anomalies
View PDFAbstract:In a theory of a Dirac fermion field coupled to a metric-axial-tensor (MAT) background, using a Schwinger-DeWitt heat kernel technique, we compute non-perturbatively the two (odd parity) trace anomalies. A suitable collapsing limit of this model corresponds to a theory of chiral fermions coupled to (ordinary) gravity. Taking this limit on the two computed trace anomalies we verify that they tend to the same expression, which coincides with the already found odd parity trace anomaly, with the identical coefficient. This confirms our previous results on this issue.
Submission history
From: Loriano Bonora [view email][v1] Tue, 3 Jul 2018 15:48:38 UTC (37 KB)
[v2] Wed, 4 Jul 2018 18:39:54 UTC (38 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.