Physics > Applied Physics
[Submitted on 13 Jul 2018]
Title:Optimized Peltier cooling via an array of quantum dots with stair-like ground-state energy configuration
View PDFAbstract:With the advancement in fabrication and scaling technology, the rising temperature in nano devices has attracted special attention towards thermoelectric or Peltier cooling. In this paper, I propose optimum Peltier cooling by employing an array of connected quantum dots with stair-like ground-state eigen energy configuration. The difference in ground state eigen energy between two adjacent quantum dots in the stair-like configuration is chosen to be identical with the optical phonon energy for efficient absorption of lattice heat. I show that in the proposed configuration, for a given optical phonon energy, one can optimize the cooling power by tuning the number of stages in the array of quantum dots. A further analysis demonstrates that the maximum cooling power at a given potential bias under optimal conditions doesnot depend strongly on the optical phonon energy or the number of stages at which the maximum cooling power is achieved, provided that the optical phonon energy is less than $kT$. The proposed concept can also be applied to $2-D$ or bulk resonant tunnel and superlattice structures with stair-like resonant energy configuration.
Current browse context:
physics.app-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.