Physics > Applied Physics
[Submitted on 11 Sep 2018]
Title:Time-resolved Absorptance and Melt Pool Dynamics during Intense Laser Irradiation of Metal
View PDFAbstract:High irradiance lasers incident on metal surfaces create a complex, dynamic process through which the metal can rapidly change from highly reflective to strongly absorbing. Absolute knowledge of this process underpins important industrial laser processes like laser welding, cutting, and metal additive manufacturing. Determining the time-dependent absorptance of the laser light by a material is important, not only for gaining a fundamental understanding of the light-matter interaction, but also for improving process design in manufacturing. Measurements of the dynamic optical absorptance are notoriously difficult due to the rapidly changing nature of the absorbing medium. This data is also of vital importance to process modelers whose complex simulations need reliable, accurate input data; yet, there is very little available. In this work, we measure the time-dependent, reflected light during a 10 ms laser spot weld using an integrating sphere apparatus. From this, we calculate the dynamic absorptance for 1070 nm wavelength light incident on 316L stainless steel. The time resolution of our experiment (< 1 us) allows for the determination of the precise conditions under which several important physical phenomena occur, such as melt and keyhole formation. The average absorptances determined optically were compared to calorimetrically-determined values, and it was found that the calorimeter severely underestimated the absorbed energy due to mass lost during the spot weld. Weld nugget cross-sections are also presented in order to verify our interpretation of the optical results, as well as provide experimental data for weld model validation.
Current browse context:
physics.app-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.