High Energy Physics - Theory
[Submitted on 11 Oct 2018]
Title:The renormalization group equations revisited
View PDFAbstract:Starting from a well defined local Lagrangian, we analyze the renormalization group equations in terms of the two different arbitrary scales associated with the regularization procedure and with the physical renormalization of the bare parameters, respectively. We apply our formalism to the minimal subtraction scheme using dimensional regularization. We first argue that the relevant regularization scale in this case should be dimensionless. By relating bare and renormalized parameters to physical observables, we calculate the coefficients of the renormalization group equation up to two loop order in the $\phi^4$ theory. We show that the usual assumption, considering the bare parameters to be independent of the regularization scale, is not a direct consequence of any physical argument. The coefficients that we find in our two-loop calculation are identical to the standard practice. We finally comment on the decoupling properties of the renormalized coupling constant.
Submission history
From: Jean-Francois Mathiot [view email][v1] Thu, 11 Oct 2018 09:46:59 UTC (30 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.