Physics > Geophysics
[Submitted on 11 Oct 2018]
Title:Coupling geologically consistent geostatistical history matching with parameter uncertainty quantification
View PDFAbstract:Iterative geostatistical history matching uses stochastic sequential simulation to generate and perturb subsurface Earth models to match historical production data. The areas of influence around each well are one of the key factors in assimilating model perturbation at each iteration. The resulting petrophysical model properties are conditioned to well data with respect to large-scale geological parameters such as spatial continuity patterns and their probability distribution functions. The objective of this work is twofold: (i) to identify geological and fluid flow consistent areas of influence for geostatistical assimilation; and (ii) to infer large-scale geological uncertainty along with the uncertainty in the reservoir engineering parameters through history matching. The proposed method is applied to the semi-synthetic Watt field. The results show better match of the historical production data using the proposed regionalization approach when compared against a standard geometric regionalization approach. Tuning large-scale geological and engineering parameters, as represented by variogram ranges, property distributions and fault transmissibilities, improves the production match and provides an assessment over the uncertainty and impact of each parameter in the production of the field.
Submission history
From: Eduardo Barrela J.A. [view email][v1] Thu, 11 Oct 2018 11:15:51 UTC (3,215 KB)
Current browse context:
physics.geo-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.