Physics > Optics
[Submitted on 15 Oct 2018 (v1), last revised 29 Oct 2019 (this version, v3)]
Title:Ridge Resonance: A new Resonance Phenomenon for Silicon Photonics Harnessing Bound States in the Continuum
View PDFAbstract:We present a new resonant behavior based on bound states in the continuum in a guided wave silicon platform. The continuum has the form of a collimated beam of light which is confined vertically in a TE mode of a silicon slab. The bound state is a discrete TM mode of a ridge on the silicon slab. The coupling between the slab and ridge modes results in a single sharp resonance at the wavelength where they phase match. We experimentally demonstrate this phenomenon on a silicon photonic chip using foundry compatible parameters and interface it on-chip to standard single mode silicon nanowire waveguides. The fabricated chip exhibits a single sharp resonance near 1550 nm with a line width of a few nanometer, an extinction ratio of 25 dB and a thermal stability of 19.5 pm/C. We believe that this is the first demonstration of bound states in the continuum resonance realized using guided wave components.
Submission history
From: Andreas Boes [view email][v1] Mon, 15 Oct 2018 22:30:55 UTC (4,625 KB)
[v2] Wed, 3 Apr 2019 05:29:54 UTC (4,608 KB)
[v3] Tue, 29 Oct 2019 23:47:16 UTC (4,629 KB)
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.