Physics > Optics
[Submitted on 16 Oct 2018 (v1), last revised 7 Nov 2018 (this version, v3)]
Title:Graphene oxide for enhanced nonlinear optics in low and high index contrast waveguides and nanowires
View PDFAbstract:We demonstrate enhanced four-wave mixing (FWM) in doped silica waveguides integrated with graphene oxide (GO) layers. Owing to strong mode overlap between the integrated waveguides and GO films that have a high Kerr nonlinearity and low loss, the FWM efficiency of the hybrid integrated waveguides is significantly improved. We perform FWM measurements for different pump powers, wavelength detuning, GO coating lengths, and number of GO layers. Our experimental results show good agreement with theory, achieving up to ~9.5-dB enhancement in the FWM conversion efficiency for a 1.5-cm-long waveguide integrated with 2 layers of GO. We show theoretically that for different waveguide geometries an enhancement in FWM efficiency of ~ 20 dB can be obtained in the doped silica waveguides, and more than 30 dB in silicon nanowires and slot waveguides. This demonstrates the effectiveness of introducing GO films into integrated photonic devices in order to enhance the performance of nonlinear optical processes.
Submission history
From: David Moss [view email][v1] Tue, 16 Oct 2018 00:01:29 UTC (1,139 KB)
[v2] Mon, 29 Oct 2018 02:21:12 UTC (1,139 KB)
[v3] Wed, 7 Nov 2018 03:41:27 UTC (1,150 KB)
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.