Mathematical Physics
[Submitted on 2 Nov 2018]
Title:Discovering the manifold facets of a square integrable representation: from coherent states to open systems
View PDFAbstract:Group representations play a central role in theoretical physics. In particular, in quantum mechanics unitary --- or, in general, projective unitary --- representations implement the action of an abstract symmetry group on physical states and observables. More specifically, a major role is played by the so-called square integrable representations. Indeed, the properties of these representations are fundamental in the definition of certain families of generalized coherent states, in the phase-space formulation of quantum mechanics and the associated star product formalism, in the definition of an interesting notion of function of quantum positive type, and in some recent applications to the theory of open quantum systems and to quantum information.
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.