Mathematical Physics
[Submitted on 8 Nov 2018 (v1), last revised 23 Sep 2019 (this version, v2)]
Title:Combinatorial expressions for the tau functions of $q$-Painlevé V and III equations
View PDFAbstract:We derive series representations for the tau functions of the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations, as degenerations of the tau functions of the $q$-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of $q$-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations are written by our tau functions. We also prove that our tau functions for the $q$-Painlevé $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations satisfy the three-term bilinear equations for them.
Submission history
From: Hajime Nagoya [view email] [via SIGMA proxy][v1] Thu, 8 Nov 2018 06:11:41 UTC (12 KB)
[v2] Mon, 23 Sep 2019 04:15:36 UTC (17 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.