Mathematical Physics
[Submitted on 12 Nov 2018 (v1), last revised 15 Apr 2019 (this version, v2)]
Title:Mean-field dynamics for mixture condensates via Fock space methods
View PDFAbstract:We consider a mean-field model to describe the dynamics of $N_1$ bosons of species one and $N_2$ bosons of species two in the limit as $N_1$ and $N_2$ go to infinity. We embed this model into Fock space and use it to describe the time evolution of coherent states which represent two-component condensates. Following this approach, we obtain a microscopic quantum description for the dynamics of such systems, determined by the Schrödinger equation. Associated to the solution to the Schrödinger equation, we have a reduced density operator for one particle in the first component of the condensate and one particle in the second component. In this paper, we estimate the difference between this operator and the projection onto the tensor product of two functions that are solutions of a system of equations of Hartree type. Our results show that this difference goes to zero as $N_1$ and $N_2$ go to infinity. Our hypotheses allow the Coulomb interaction.
Submission history
From: Gustavo de Oliveira [view email][v1] Mon, 12 Nov 2018 20:06:04 UTC (31 KB)
[v2] Mon, 15 Apr 2019 12:06:35 UTC (23 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.