Mathematical Physics
[Submitted on 13 Nov 2018]
Title:Newton's Second Law in Field Theory
View PDFAbstract:In this article we present a natural generalization of Newton's Second Law valid in field theory, i.e., when the parameterized curves are replaced by parameterized submanifolds of higher dimension. For it we introduce what we have called the geodesic $k$-vector field, analogous to the ordinary geodesic field and which describes the inertial motions (i.e., evolution in the absence of forces). From this generalized Newton's law, the corresponding Hamilton's canonical equations of field theory (Hamilton-De Donder-Weyl equations) are obtained by a simple procedure. It is shown that solutions of generalized Newton's equation also hold the canonical equations. However, unlike the ordinary case, Newton equations determined by different forces can define equal Hamilton's equations.
Submission history
From: Ricardo J. Alonso-Blanco [view email][v1] Tue, 13 Nov 2018 10:17:17 UTC (16 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.