Physics > Medical Physics
[Submitted on 14 Nov 2018 (v1), last revised 4 Jun 2020 (this version, v4)]
Title:SURE-based Automatic Parameter Selection For ESPIRiT Calibration
View PDFAbstract:Purpose: Parallel imaging methods in MRI have resulted in faster acquisition times and improved noise performance. ESPIRiT is one such technique that estimates coil sensitivity maps from the auto-calibration region using an eigenvalue-based method. This method requires choosing several parameters for the the map estimation. Even though ESPIRiT is fairly robust to these parameter choices, occasionally, poor selection can result in reduced performance. The purpose of this work is to automatically select parameters in ESPIRiT for more robust and consistent performance across a variety of exams.
Theory and Methods: Stein's unbiased risk estimate (SURE) is a method of calculating an unbiased estimate of the mean squared error of an estimator under certain assumptions. We show that this can be used to estimate the performance of ESPIRiT. We derive and demonstrate the use of SURE to optimize ESPIRiT parameter selection.
Results: Simulations show SURE to be an accurate estimator of the mean squared error. SURE is then used to optimize ESPIRiT parameters to yield maps that are optimal in a denoising/data-consistency sense. This improves g-factor performance without causing undesirable attenuation. In-vivo experiments verify the reliability of this method.
Conclusion: Simulation experiments demonstrate that SURE is an accurate estimate of expected mean squared error. Using SURE to determine ESPIRiT parameters allows for automatic parameter this http URL-vivo results are consistent with simulation and theoretical results.
Submission history
From: Siddharth Iyer [view email][v1] Wed, 14 Nov 2018 08:00:45 UTC (6,088 KB)
[v2] Thu, 23 Jan 2020 15:08:09 UTC (4,673 KB)
[v3] Mon, 24 Feb 2020 13:37:44 UTC (3,992 KB)
[v4] Thu, 4 Jun 2020 15:59:36 UTC (6,307 KB)
Current browse context:
physics.med-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.