Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 15 Nov 2018 (v1), last revised 2 Apr 2019 (this version, v2)]
Title:Effect of Magnetic Field on Goos-Hänchen Shifts in Gaped Graphene Triangular Barrier
View PDFAbstract:We study the effect of a magnetic field on Goos-Hänchen shifts in gaped graphene subjected to a double triangular barrier. Solving the wave equation separately in each region composing our system and using the required boundary conditions, we then compute explicitly the transmission probability for scattered fermions. These wavefunctions are then used to derive the Goos-Hänchen shifts in terms of different physical parameters such as energy, electrostatic potential strength and magnetic field. Our numerical results show that the Goos-Hänchen shifts are affected by the presence of the magnetic field and depend on the geometrical structure of the triangular barrier.
Submission history
From: Ahmed Jellal [view email][v1] Thu, 15 Nov 2018 18:18:58 UTC (2,074 KB)
[v2] Tue, 2 Apr 2019 09:08:33 UTC (2,773 KB)
Current browse context:
cond-mat.mes-hall
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.