Quantum Physics
[Submitted on 21 Nov 2018]
Title:On the spectral gap of random quantum channels
View PDFAbstract:In this work, we prove a lower bound on the difference between the first and second singular values of quantum channels induced by random isometries, that is tight in the scaling of the number of Kraus operators. This allows us to give an upper bound on the difference between the first and second largest (in modulus) eigenvalues of random channels with same large input and output dimensions for finite number of Kraus operators $k\geq 169$. Moreover, we show that these random quantum channels are quantum expanders, answering a question posed by Hastings. As an application, we show that ground states of infinite 1D spin chains, which are well-approximated by matrix product states, fulfill a principle of maximum entropy.
Submission history
From: Carlos E. González-Guillén [view email][v1] Wed, 21 Nov 2018 17:50:03 UTC (274 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.