Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 26 Nov 2018 (v1), last revised 5 Oct 2019 (this version, v2)]
Title:Drinfeld-Sokolov hierarchies and diagram automorphisms of affine Kac-Moody algebras
View PDFAbstract:For a diagram automorphism of an affine Kac-Moody algebra such that the folded diagram is still an affine Dynkin diagram, we show that the associated Drinfeld-Sokolov hierarchy also admits an induced automorphism. Then we show how to obtain the Drinfeld-Sokolov hierarchy associated to the affine Kac-Moody algebra that corresponds to the folded Dynkin diagram from the invariant sub-hierarchy of the original Drinfeld-Sokolov hierarchy.
Submission history
From: Chao-Zhong Wu [view email][v1] Mon, 26 Nov 2018 01:28:38 UTC (38 KB)
[v2] Sat, 5 Oct 2019 14:42:22 UTC (41 KB)
Current browse context:
nlin.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.