Computer Science > Social and Information Networks
[Submitted on 24 Oct 2018]
Title:Improved Intolerance Intervals and Size Bounds for a Schelling-Type Spin System
View PDFAbstract:We consider a Schelling model of self-organized segregation in an open system that is equivalent to a zero-temperature Ising model with Glauber dynamics, or an Asynchronous Cellular Automaton (ACA) with extended Moore neighborhoods. Previous work has shown that if the intolerance parameter of the model $\tau\in (\sim 0.488,\sim 0.512) \setminus \{1/2\}$, then for a sufficiently large neighborhood of interaction $N$, any particle will end up in an exponentially large monochromatic region almost surely.
This paper extends the above result to the interval $\tau \in (\sim 0.433,\sim 0.567) \setminus \{1/2\}$. We also improve the bounds on the size of the monochromatic region by exponential factors in $N$. Finally, we show that when particles are placed on the infinite lattice $\mathbb{Z}^2$ rather than on a flat torus, for the values of $\tau$ mentioned above, sufficiently large $N$, and after a sufficiently long evolution time, any particle is contained in a large monochromatic region of size exponential in $N$, almost surely. The new proof, critically relies on a novel geometric construction related to the formation of the monochromatic region.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.